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Chebyshev�Markov rational functions are the solutions of the following extremal
problem

min
c1 , ..., cn # R "xn+c1xn&1+ } } } +cn

|n(x) "C(K)

with K being a compact subset of R and |n(x) being a fixed real polynomial of
degree less than n, positive on K.

A parametric representation of Chebyshev�Markov rational functions is found
for K=[b1 , b2] _ } } } _ [b2p&1 , b2p], &�<b1�b2< } } } <b2p&1�b2p<+� in
terms of Schottky�Burnside automorphic functions. � 1998 Academic Press

1. INTRODUCTION

Let K be a compact subset of the real line, C its complement R"K, and
let 8=[,0 , ,1 , ..., ,n] be a complete Tchebysheff (CT-) [15] system of
continuous functions over K. The unique polynomial which deviates least
from zero on K with respect to the sup-norm among all polynomials of the
form c0,0(x)+ } } } cn&1,n&1(x)+,n(x), c i # R, is called Chebyshev poly-
nomial and denoted by Tn(K, 8, x), i.e.,

&Tn(K, 8, x)&C(K)=min
ci # R

&c0,0+ } } } +cn&1,n&1+,n&C(K) . (1)
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For the cases K=[&1, 1],

8=8P=[1, x, ..., xn] and 8=8R={ 1
|n(x)

,
x

|n(x)
, ...,

xn

|n(x)= ,

where |n(x) # Pn is a fixed real polynomial of degree less or equal n non-
vanishing on K, those polynomials were found by P. L. Chebyshev [36]. In
1906 A. A. Markov (see [21]) gave another representation of Tn(K, 8, x)
by trigonometric functions for the same cases and also for K=[&1, 1],

8=8A={ 1
(|2n(x))1�2 ,

x
(|2n(x))1�2 , ...,

xn

(|2n(x))1�2= ,

where |2n(x) # P2n is a fixed polynomial which is positive on K.
The case K=[&1, 1] and 8=8P is well-known under the name ``classi-

cal Chebyshev polynomials.'' There are many works about them and their
applications, including at least four specialized books [14, 23, 30, 33].

The case K=[&1, 1], and 8=8R is known in Russian mathematical
literature as ``Chebyshev�Markov rational functions.'' They have many
applications in analysis and techniques (see [31] which is devoted to them,
and [8, 11, 19]).

S. N. Bernstein [7] showed that those functions are orthogonal with
corresponding weight on [&1, 1] and used them for investigations on
asymptotic behavior of orthogonal polynomials relative to general weights.

The case of disconnected sets is more complicated. For system 8=8P

and K=[&1, a] _ [b, 1], &1<a<b<1 the problem was solved by
N. I. Achieser [1�4]. Interest to the problem rose after works [24, 34],
where connection was discovered of Achieser's polynomials with ortho-
gonal polynomials. Let us indicate here recent note [22], where geometric
aspects of the problem are investigated. Analogue of Achieser's solution for
8=8R and K=[&1, a] _ [b, 1] was found by the author [20]. Many
aspects of this problem and connection with orthogonal rational functions
are contained in [27].

The case of several intervals and 8=8P was treated recently in many
works (see, for instance, [5, 38], surveys [26, 35]). One of the main
advantages here is the connection with orthogonal polynomials, discovered
by F. Peherstorfer, M. L. Sodin and P. M. Yuditsi@$ [25, 35]. For 8=8R

and K=[b1 , b2] _ } } } _ [b2p&1 , b2p] the connection with orthogonal
rational functions was discovered by F. Peherstorfer [25]. The works [18,
26, 29] contain many related results.

The main goal of the paper is to present a complete solution of (1) for
any system of poles [1�ai, n] ln

i=1 /C"K with |n(x)=> ln
i=1 (1&a i, nx)mi, n

# Pn&1 in terms of automorphic Schottky�Burnside functions. The method
is a generalization of N. I. Achieser's method [1, Kapitel V].
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At first let us remember the Chebyshev�Markov rational functions:

Mn(x)=Mn cos :
ln

i=1
\mi, n arc cos

x&ai, n

1&ai, nx
+}n arc cos x+ ,

(2)

Mn=1<\2}n�2&1 `
ln

i=1

(1+(1&a2
i, n)1�2)mi, n+ .

Here and everywhere later 8=8R with |n(x)=> ln
i=1 (1&ai, n)mi, n,

�ln
i=1 mi, n+}n=n, |n(x) # Pn , moreover |n(x)>0, x # [&1, 1], and

A=[ai, n] ln , �
i=1, n=1 is the matrix of the inverse values of the poles,

ai, n {aj, n , i, j=1, ..., ln , i{ j.
Further we shall use the following definitions from the theory of

automorphic Schottky�Burnside functions. Denote by G(K1 , ..., Kq&1)/C
any domain which is the upper half of the complex plane without disjoint
circles K1 , ..., Kq&1 , lying inside it. The domain G(K1 , ..., Kq&1) together
with a domain symmetric to it with respect to the real axis and with the
real axis is called the fundamental domain of a Schottky group 1 (together
with �K1 , ..., �Kq&1 , see [13]). Generators of the group 1 are maps Ti (z)
=(R2

i �(z&oi))+o� i , i=1, ..., q&1, where oi is a center and R i is a radius
of the circle Ki , i=1, ..., q&1. The group 1 consists of mappings

1=[Ti]�
i=0 , T0(z)#z.

Now we introduce the following W. Burnside's functions [9, 10] (cf.
[6, Ch. 14]):

0(z, y)=(z& y) `
i

$ (Ti (z)& y)(Ti ( y)&z)
(Ti (z)&z)(Ti ( y)& y)

, (3)

exp 8i (z)=
z&ci

z&ci&1
`
�

j=1
j{i

z&cj&1i

z&cj&1
. (4)

Here and everywhere later cj=T&1
j (�), ci&1=Ti (�), and ci&1j equals

Ti (T &1
j (�)), and prime near signs of products means that of each pair of

inverse substitutions T and T&1, only one is to be taken in the infinite
product and i>0. Moreover, let

[z; !]= `
�

i=0

z&Ti (!)
z&Ti (&!)

(5)

be J. Kluyver's function [16].
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Definition 1. We shall say that the n th row of the matrix A is regular
with respect to K=[b1 , b2] _ } } } _ [b2q&1 , b2q] if the solution Rn* of
problem (1) with 8=8R is such that for any : with &&R*n&C(K)�:�
&R*n&C(K) all zeroes of the function Rn*(x)&: belong to K. The matrix A
is called regular with respect to K if its rows are regular for any n # N,
n�q.

2. AUXILIARY RESULTS

It is more convenient from the beginning to treat the problem as one of
the uniform approximation with the weight s # C(K), s(x){0 for x # K,
K=[b1 , b2] _ } } } _ [b2q&1 , b2q] of the function f # C(K) by algebraic
polynomials of degree no more than n.

Proposition 1 (The Chebyshev Alternation Theorem). Let f # C(K),
En=maxx # K |( f (x)& p(x))�s(x)|, and =(x)=( f (x)& p(x))�s(x). Then p(x)
is the best approximation of f with respect to Pn iff there are at least n+2
points [xi]n+2

i=1 /K, x i<x i+1 such that the following relations hold:

|=(xi)|=En , i=1, 2, ..., n+2, (6)

=(xi+1)==(x i)(&1)1+�j # J sj, (7)

with J=[ j: xi�b2 j<b2 j+1�xi+1], (&1)sj=sign(s(b2 j) s(b2 j+1)).

The proof of this proposition is quite analogous to usual (see, for
instance, [12]) and is omitted here.

Lemma 1. A row An is regular with respect to K=[b1 , b2] _ } } } _
[b2q&1 , b2q] iff the rank of the following matrix equals q&1 with some
ni # N, i=1, ..., q; n1+ } } } +nq=n:

rank \ e ij

fkj

di

gk+
q, q&1, q&1

i=1, k=1, j=1

=q&1, (8)

where

ei, j=|
b2i

b2i&1

xq& j&1

(&h(x))1�2 dx, i=1, ..., q; j=1, ..., q&1; (9)

fk, j=|
b2k+1

b2k

xq& j&1

h1�2(x)
dx, k=1, ..., q&1; j=1, ..., q&1; (10)

336 A. L. LUKASHOV



di=ni ?(&1)q&i+1&*i+}n |
b2i

b2i&1

xq&1

(&h(x))1�2 dx

+ :
ln

j=1

mj, naj, n h1�2(1�aj, n) |
b2i

b2i&1

_
dx

(1&aj, n x)(&h(x))1�2 , i=1, ..., q; (11)

gk=}n |
b2k+1

b2k

xq&1

h1�2(x)
+ :

ln

j=1

mj, naj, n h1�2(1�a j, n)

_|
b2k+1

b2k

dx
(1&a j, nx) h1�2(x)

, k=1, ..., q&1; (12)

h(x)= `
2q

j=1

(x&bj); (13)

*i= :
q

j=i

:
k: (1�ak, n) # (b2 j, b2 j+1)

mk, n , b2q+1=+�,

and in the nominators branches of square roots are chosen in such a way that

lim
x � �

h1�2(x)
xq =1,

in the denominators the arithmetical roots are taken, and for 1�aj, n #
[b2k , b2k+1], k=1, ..., q, the corresponding integral in (13) is understood in
Cauchy's principal value sense.

Proof. Let An be regular with respect to K. On K the function Rn*(x)
does not exceed the value Rn=&R*n&C(K) and simultaneously the inequality
|Rn*(x)|>Rn holds on R"E.

Assume firstly that none of the 1�aj, n 's, j=1, ..., ln belongs to the interval
[b1 , b2q]. Then there exist numbers n1 , ..., nq # N such that n1+ } } } +
nq=n and exactly nj zeroes of the function Rn*(x) and nj+1 deviation
points (where |Rn*(x)|=Rn) belong to [b2 j&1 , b2 j]. Hence the following
relations for the function

f (z)=Rn*$(z)�(Rn*
2(z)&R2

n)1�2

hold:

(1)

|
$j

f (z) dz=ln(Rn*(z)+(Rn*
2(z)&R2

n)1�2)| $j
=2n j?i, (14)
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where $j is a contour surrounding [b2 j&1 , b2 j] and such that no poles
1�ak, n , k=1, ..., ln , lie inside (on the upper sheet of R) and on the contour $j .

(2) �#i
f (z) dz=0, i=1, ..., q&1, where #i is a contour coming from

the upper side of the barrier [b2i&1 , b2i] on the upper sheet, then passing
through the barrier [b2i+1 , b2i+2] onto the lower sheet, and coming back
to the barrier [b2i&1 , b2i] such that no poles 1�ak, n , k=1, ..., ln lies ``inside''
and on the contour #i , i=1, ..., q&1. Moreover, #i & #j=< for i{ j,
$i & $j=< for i{ j.

(3)

f (z)=\}nuq&1(z)+ :
ln

j=1

mj, naj, n h1�2(1�a j, n)
1&a j, nz +<h1�2(z), (15)

where uq&1(z) is a monic polynomial of degree q&1.
Now let the polynomial uq&1(z) be a unique polynomial determined by

the equations

|
#i
\}nuq&1(z)+ :

ln

j=1

mj, n aj, nh1�2(1�aj, n)
1&a j, n z +<h1�2(z) dz=0, i=1, ..., q&1.

(16)

Hence substitution of (15) into (14) gives the relations

|
$k
\}nuq&1(z)+ :

ln

j=1

m j, na j, nh1�2(1�aj, n)
1&aj, nz +<h1�2(z) dz

=2nk?i, k=1, ..., q. (17)

One obtains after contraction of contours #i and $k to intervals of the real
axis the following equalities:

|
b2i+1

b2i
\}n uq&1(x)+ :

ln

j=1

mj, naj, n h1�2(1�a j, n)
1&a j, nx +<h1�2(x) dx

=0, i=1, ..., q&1, (18)

|
b2k+2

b2k+1

}nuq&1(x)+ :
ln

j=1

mj, n aj, nh1�2(1�aj, n)
1&aj, n x

(h(x))1�2 dx

=nk+1?(&1)q+1&k&*k, k=0, ..., q&1. (19)
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Conversely from (18), (19) it follows (16), (17) for any contours $i , #i

sufficiently close to the real axis, so the function

,(z)=exp \| z

b1

}n uq&1(z)+ :
ln

j=1

mj, naj, n h1�2(1�a j, n)
1&a j, nz

h1�2(z)
dz+

is a single-valued analytic function on the Riemann surface R with poles in
�2 of order }n and in (1�aj, n)2 of order mj, n , j=1, ..., ln . Indeed, it is
enough to apply the Argument Principle with a sufficiently great contour
C on the upper sheet surrounding the set K and all poles (1�aj, n)2 ,
j=1, ..., ln . We find then

1
2?i |C

,$(z)
,(z)

dz=
1

2?i |C \}nuq&1(z)+ :
ln

j=1

mj, naj, n h1�2(1�aj, n)
1&aj, nz +<h1�2(z) dz

= res
z=�2

}nuq&1(z)
h1�2(z)

=&}n . (20)

The same reasoning shows that

1
2?i |Cj

,$(z)
,(z)

dz= res
z=(1�aj, n)2

mj, naj, nh1�2(1�aj, n)
(1&aj, nz) h1�2(z)

=&mj, n , j=1, ..., ln , (21)

where Cj , j=1, ..., ln are disjoint small circles with centers 1�a j, n , j=1, ..., ln

without intersections with K.
The form of the function ,(z) and (20), (21) show immediately that ,(z)

has zeros at �1 of order }n and at (1�aj, n)1 of order m j, n , j=1, ..., ln .
Hence the function ,(z) may be presented in the form

,(z)=R1(z)+R2(z) h1�2(z),

where R1 and R2 are rational functions with poles at � of order }n and
at 1�aj, n of order mj, n , j=1, ..., ln . Since ,(z) changes according rule
,(@(z))=1�,(z) under the involution @(z) which interchanges sheets of the
surface R, we find

(R1(z)+R2(z) h1�2(z))(R1(z)&R2(z) h1�2(z))=1
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or

(P1(z)+P2(z) h1�2(z))(P1(z)&P2(z) h1�2(z))= `
ln

j=1

(1&aj, n z)2mj, n,

where P1 and P2 are polynomials of degree 2n and 2n&q correspondingly.
Let us prove that

P1(z)
> ln

j=1 (1&aj, nz)mj, n
=C1Rn*(z). (22)

First of all, P1(z) is a real polynomial. Indeed,

R(z)=
P1(z)
|n(z)

=
,(z)+1�,(z)

2

=cosh \|
z

b1
\}nuq&1(z)+ :

ln

j=1

aj, nh1�2(1�a j, n)
1&aj, nz +<h1�2(z)+ dz

and it is enough to observe that for instance R(z) is a real rational function
with |R(z)|�1 when z # (&�, b1)2 . Let us check now the alternation
property of R(x) on K. Since

R(x)=cosh \\|
b2

b1

+ } } } +|
b2 j&1

b2 j&2

+|
x

b2 j&1
+\}nuq&1(x)

+ :
ln

j=1

mj, na j, nh1�2(1�a j, n)
1&aj, nx +<h1�2(x) dx+

=cosh \i :
j&1

k=1

2nk?+i(&1)q& j |
x

b2 j&1

f (x) dx+
=cos |

x

b2 j&1

f (x) dx

for x # [b2 j&1 , b2 j], it follows that |R(x)|�1 for x # K. Moreover, the
equality

|
b2 j

b2 j&1

f (x) dx=nj?(&1)q& j&*j,

implies the existence of nj+1 points ej, 0=b2 j&1< } } } <ej, nj
=b2 j with

|R(ej, k)|=1 and R(ej, k+1)=&R(ej, k), j=1, ..., q; k=0, 1, ...nj . So the
points e1, 0 , ..., e1, n1

, e2, 0 , ...eq, nq
form an alternant, and the case if all poles

1�aj, n are outside of [b1 , b2q] is proved completely.
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Assume now the presence of poles on [b2i , b2i+1]. Then the contour #i

contains those poles inside it. Nevertheless, since the image of #i under the
map

z � Rn*(z)+(Rn*
2(z)&R2

n)1�2

does not pass around the origin the relation �#i
f (z) dz=0 holds. Hence

2 |
#i, =

f (x) dx+ :
k: 1�ak, n # [b2i , b2i+1]

|
C=, k

f (z) dz=0, (23)

where #i, ==[b2i , b2i+1]"�k: 1�ak, n # [b2i , b2i+1][1�ak, n&=, 1�ak, n+=] and C=, k

is a ``circumference'' with the upper half on the upper sheet and the lower
half on the lower sheet of the Riemann surface R.

The substitution z=1�ak, n+=ei,, ?�,�0 for the upper arc and 0�
,�&? for the lower arc gives

lim
= � 0

:
k: 1�ak, n # [b2i , b2i+1]

|
C=, k

f (z) dz=0.

Finally, conditions (18) may be replaced by

v.p. |
b2i+1

b2i
\}n uq&1(x)+ :

ln

j=1

mj, n aj, n

1&aj, n x
h1�2(1�a j, n)+<h1�2(x) dx=0,

i=1, ...q&1.
The converse assertion is proved as above.
Let us prove now the equivalence of (18)�(19) to (8)�(12). For that

reason take uq&1(x)=xq&1+c1xq&2+ } } } +cq&1 . Then (18) and (19)
mean linear dependence of columns in the matrix

\ eij

fkj

d i

gk+
q, q&1, q&1

i=1, k=1, j=1

.

Taking into account linear independence of columns in the matrix
( fk, j)

q&1, q&1
k=1, j=1 one proves Lemma 1.

Remark 1. F. Peherstorfer and S. Ho� lzl [28] proved an analogue of
Lemma 1 by slightly different method under the assumption that 1�aj, n �

[b1 , b2q], j=1, ..., ln .

Remark 2. Other characterizations of regular rows (under different
names) may be found in [18, 26, 29].
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Lemma 2. For any system of q, q>1, intervals

E=[b1 , b2] _ } } } _ [b2q&1 , b2q], &�<b1<b2< } } } <b2q<+�,

there exists a system of q&1 circles K1 , ..., Kq&1 , with Ki /[z: Iz>0];
Ki & Kj=<, i{ j; K1=[z: |z&i |=R1] such that the function

x=8(z)=(b1&b2) `
�

i=0

(z&Ti (0))2

(z&Ti (!))(z&Ti (!� ))
+b2 , (24)

where

`
i

$ (Ti (!)&!)2 T 2
i (!� )

T 2
i (0)(Ti (0)&!)2 =b1&b2 , (25)

gives the conformal mapping of the region G(K1 , ..., Kq&1) onto C"E.

Proof. By Ko� be's [17] (see also [37, Theorem IX.35]) the region C"E
may be mapped conformally onto a circular domain T=T (0). Without loss
of generality it can be assumed that one circle (K0) coincides with the real
axis. Intervals [&�, b1] _ [b2q , +�], [b2 , b3], ..., [b2q&2 , b2q&1] of C� "E
are mapped then onto q analytic curves 1 (1)

1 , ..., 1 (1)
q . The curves

1 (1)
1 , ..., 1 (1)

q connect circles Ki and Ki+1 , i=1, ..., q&2; the circle K1 with
the real axis K0 , and the circle Kq&1 with infinity. By the construction there
exists an indirectly conformal map `1=/� (`) of the domain T onto itself
with fixed curves 1 (1)

1 , ..., 1 (1)
q . Let us invert T (0) with respect to Ki

(i=0, 1, ..., q&1) and let the inverse be denoted by T (1)
i , i=0, 1, ..., q&1.

By the Riemann�Schwartz Symmetry Principle the mapping /� may be
extended to the domain T (1)=T (0) _ T (1)

0 _ } } } _ T (1)
q&1 . Let the curves

1 (2)
1 , ..., 1 (2)

q2 be the inverses of 1 (1)
1 , ..., 1 (1)

q with respect to K i

(i=0, 1, ..., q&1). Then /� fixes curves 1 (1)
1 , ..., 1 (1)

q , 1 (2)
1 , ..., 1 (2)

q2 . We invert
now T (1) with respect to its boundary circumferences and so on, hence /�
is extended on a domain 0=C� "F, where F is the singular set of the corres-
ponding Schottky group 1(K1 , ..., Kq&1). So the function f (z)=/(z) is
regular and bounded in U"F, where U is a neighborhood of F. Since /� (z)
maps each equivalent of Ki under the group 1(K1 , ..., Kq&1) onto itself, all
conditions of Ko� be's lemma for f (z) ([37, p. 422]) are satisfied. Hence /(z)
is a regular and schlicht map of C� onto itself and therefore /(z) is a Mo� bius
mapping with fixed real axis. Thus 1 (1)

1 , ..., 1 (1)
q , 1 (2)

1 , ..., 1 (2)
q2 , ... are parts

of a circumference which intersects all circles Ki (i=0, 1, ..., q&1) under
right angles. For the sake of being definite let # be the imaginary axis and
let z=i be the center of K1 .

342 A. L. LUKASHOV



Let x=,(z) be the mapping function. Then by the construction
,(0)=b2 , ,(�)=b1 . Let us find this mapping now. Suppose that b2=0.
The mapping function y=,� (z) has in the fundamental domain G of the
group 1=1(K1 , ..., Kq&1) one double zero at the origin and two poles at
points z=! and z=!� =&! in the fundamental domain G of the group
1=1(K1 , ..., Kq&1). The function y=,� (z) has real values on �K0 ,
�K1 , ..., �Kq&1 , it may be extended by the Riemann�Schwartz Symmetry
Principle to the domain G=C� "E. The extended function will be
automorphic with respect to the group 1 since each substitution from 1 is
equal to two invertions with respect to �K0 and to �Ki or its equivalents.
Hence by W. Burnside's theorem [10]

,� (z)=
02(z; 0)

(0(z; !))(0(z; !� ))
exp :

q&1

k=1

mk8k(z), (26)

where mk , k=1, ..., q&1 are some integers. It follows from (3), (26) that

,� (z)=\z2 `
i

$ T 2
i (z)(Ti (0)&z)2

(T i (z)&z)2 T 2
i (0)

exp :
q&1

k=1

mk8k(z)+<

\(z&!)(z&!� ) `
i

(Ti (z)&!)(Ti (z)&!� )(Ti (!)&z)(Ti (!� )&z)
(Ti (z)&z)2 (Ti (!)&!)(Ti (!� )&!� ) + .

(27)

From the definition of 8k(z) it is evident that 2�Ki
arg 8k(z)=2? $ik , but

by the construction of ,� (z) we have that 2�Ki
arg 8� (z)=0 for

i=0, 1, ..., q&1, hence by (27) it follows that mk=0, k=1, ..., q&1. Thus

,� (z)=
z2

(z&!)(!&!� )
`

i

$ T 2
i (z)(Ti (0)&z)2 (Ti (!)&!)(Ti (!� )&!� )

T 2
i (0)(Ti (z)&!)(Ti (z)&!� )(Ti (!)&z)(Ti (!� )&z)

.

Evident relations

(Ti (!)&!) T i (z)
(Ti (z)&!) Ti (!)

=
(!&T &1

i (!))(z&T &1
i (0))

(z&T &1
i (!))(!&T &1

i (0))
,

(Ti (!� )&!� ) T i (z)
(Ti (z)&!� ) Ti (!� )

=
(!� &T &1

i (!� ))(z&T &1
i (0))

(z&T &1
i (!� ))(!� &T &1

i (0))
,

Ti (z)(Ti (0)&z)
Ti (0)(Ti (z)&z)

=
(T &1

i (0)&z) T &1
i (z)

T &1
i (0)(T &1

i (z)&z)
,
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and (27) prove that

,� (z)=
z2

(z&!)(z&!� )
`

i

$ (T &1
i (0)&z)(Ti (0)&z)(!&T &1

i (!))
T &1

i (0)(Ti (!)&z)(Ti (!� )&z) Ti (z)

_
(z&T &1

i (0))2 (!� &T &1
i (!� )) T &1

i (z)(Ti (z)&z)

\Ti (0)(z&T &1
i (!))(!&T &1

i (0))(z&T &1
i (!� ))

(!� &T &1
i (0))(T &1

i (z)&z) +
= `

�

i=0

(z&Ti (0))2

(z&Ti (!))(z&T i (!� ))

_`
i

$ (T &1
i (0)&z)

(Ti (0)&z)
(!&T &1

i (!))(!� &T &1
i (!� ))

T &1
i (0) Ti (z) Ti (0)

_
T &1

i (z)(Ti (z)&z) Ti (!) Ti (!� )
(!&T &1

i (0))(!� &T &1
i (0))(T &1

i (z)&z)
.

Then the equality

(T &1
i (0)&z)(T &1

i (z)&z) T &1
i (z)

(T i (0)&z) Ti (z)(T &1
i (z)&z)

=
T &1

i (0)
Ti (0)

shows that ,� (z) may be written in the form

,� (z)= `
�

i=0

(z&Ti (0))2

(z&Ti (!))(z&Ti (!� ))

_`
i

$
(!&T &1

i (!))(!� &T &1
i (!� )) Ti (!) Ti (!� )

T 2
i (0)(!&T &1

i (0))(!� &T &1
i (0))

,

or

,� (z)=C2 `
�

i=0

(z&Ti (0))2

(z&Ti (!))(z&T i (!� ))
.

Therefore

x=,(z)=C2 `
�

i=0

(z&Ti (0))2

(z&Ti (!))(z&Ti (!� ))
+b2 .

Since ,(�)=b1 we have C2=b1&b2 , and Lemma 2 is proved.

Remark 3. N. I. Achieser [1] was the first who used automorphic func-
tions for approximation theory problems. Moreover he used the conformal
mapping of T (0) onto C� "E to find Chebyshev polynomials for two intervals
in the case of existence of one additional interval such that the Chebyshev
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polynomial deviated least from zero simultaneously on these three intervals
and on given two intervals.

Lemma 3. Let An be regular with respect to E, q>1. Then

Rn*(x)=Rn g \[z, !0]}n

[z; !� 0]}n
`
ln

i=1

[z, !i]
mi, n

[z; !� i]
mi, n

exp {& :
q&1

i=1

n i+18i (z)=+ (28)

is the solution of problem (1) with K=E. Here g( y)=( y+1�y)�2 is the
Joukowski map, x=,(z) is the mapping function from Lemma 2,
,(!i)=1�a i, n , i=1, ..., ln , ,(!0)=�, the numbers ni , i=1, ..., q are defined
by Lemma 1, and Rn is found from the relation

lim
x � �

Rn*(x)
x}n

=1<`
ln

i=1

(&ai, n)mi, n. (29)

Proof. It follows from the regularity and the proof of Lemma 1 that the
function f (x)=Rn*(x)+((Rn*)2 (x)&R2

n)1�2 is meromorphic on C"E with
poles at the point � of order }n and at points 1�a i, n of order mi, n ,
i=1, ..., ln , if the branch of square roots is chosen by such a way that

lim
x � +�

(Rn*(x) |n(x))1�2�xn=1.

By application of the substitution x=,(z) into f (x) one obtains the func-
tion y=F(z) with poles at !0 of order }n and at !i of order mi, n , i=1, ..., ln .
Moreover the variation of argument of y under surrounding the circum-
ference �Ki is equal to 2ni+1? and under passing the real axis is 2n1?. The
application of the Riemann�Schwartz Symmetry Principle permits to
extend the function F(z) up to an automorphic function with respect to the
corresponding Schottky group 1.

By Burnside's theorem [10]

F(z)=C3 `
ln

i=1

0mi, n(z; !i)
0mi, n(z; !� i)

0}n&1(z; !0)
0}n&1(z; !� 0)

0(z; `)
0(z; !0)

, (30)

with `=Tk(!0) for an integer k. Since

0(z; Ti (!))=0(z; !) exp 8i (z), i=1, ..., q&1,
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one can write down the representation

F(z)=C4 `
ln

i=1

0mi, n(z; !i)
0mi, n(z; !� i)

0}n&1(z; !0)
0}n&1(z; !� 0)

_exp { :
q&1

i=1

ki8 i (z)= , ki # Z. (31)

It follows from (4) that the variation of the argument for the function
exp 8i (z) is equal to zero when z is passing along �Kj , j{i and equals 2?
with z passing �Ki counter-clockwise. By (3) the argument of the function

0(z; !i)
0(z; !� )

does not change when z passes the circumference �Kj , j=1, ..., q&1.
Next let us transform the equality (31) by using the following auxiliary

formulae:

0(z; w)
0(z; w� )

=
z&w
z&w�

`
j

$ (Tj (z)&w)(Tj (w� )&w� )(Tj (w)&z)
(Tj (z)&w� )(Tj (w)&w)

=
z&w
z&w�

`
j

$ (Tj (w)&z)(T &1
j (w)&z)(T &1

j (w� )&w� )
(T &1

j (w� )&z)(T &1
j (w)&w)(Tj (w� )&z)

= `
�

j=0

z&T j (w)
z&Tj (w� )

`
j

$ T &1
j (w� )&w�

T &1
j (w)&w

.

The result is

`
ln

i=1

0mi, n(z; !i)
0mi, n(z; !� )

=C5 `
ln

i=1

[z, !i]
mi, n.

From the relation F(�)=1 the representation

F(z)=[z, !0]}n `
ln

i=1

[z, !i]
mi, n exp {& :

q&1

i=1

n i+18i (z)=
follows. Thus by the definition of F(z) Lemma 3 is proved.

Remark 4. Automorphic functions were used for the first time in
approximation theory by N. I. Achieser but his formulae for the case q=3,
n2=1 in Lemma 3, are different from (24) and (38). The reason is that we
use W. Burnside's theorem on the representation of an automorphic func-
tion with given zeroes and poles while N. I. Achieser's formula is based on
F. Schottky's paper [32].
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Remark 5. For q=2 it is possible to express all formulae in terms of
elliptic functions (see [20] or [27]).

3. MAIN RESULT

Let K=[b1 , b2] _ } } } _ [b2p&1 , b2p], b1�b2<b3� } } } <b2p , and if
b2i&1=b2i , i=1, ..., p then p>n. To be definite suppose b2p=&b1=1.
From now on let K be fixed. Furthermore, let q be an integer, 1�q�
2p&1. The collection [Kq , C (0)

q , Nq] with Kq=[kj]q&1
j=1 /N, 1�kj�

p&1; C (0)
q /B=[b1 , b2 , ..., b2p], |C (0)

q |=q+1; Nq=[n i]q
i=1 /N, is called

admissible for An if the following conditions are satisfied:

1. the sequence [kj]q&1
j=1 does not decrease and the equation kj=

kj+1=kj+2 is not possible for any j, j=1, 2, ..., q&3;

2. for any j, j=1, 2, ..., q&1 with kj {kj+1 exactly one point from
b2kj+1 , b2kj

belongs to C (0)
q . Denote it by b� 2 j+1 , b� 2 j correspondingly.

Furthermore, let us suppose that b2kj
=b� 2 j , b2kj+1=b� 2 j+3 for kj=kj+1 ,

and b1=b� 1 # C (0)
q , b2p=b� 2q # C (0)

q ;

3. �q
i=1 ni=n, and the equality nj+1=1 holds for kj=k j+1 .

Moreover, let k0=1, kq= p. Furthermore, consider matrices A( j) such
that

An"A ( j)
n =[ai1

(j)
, n , ai2

(j)
, n , ..., ai l

(j)
, n](A (0)

n =An),

where 1�ai k
(j)

, n # (b2mk
(j) , b2m k

(j)
+1), and for any j the relations m ( j)

i {m ( j)
k with

i{k; i, k # [1, ..., l] hold. Admissible collections for [Kq , C ( j)
q , Nq] for

A( j)
n , j{0, are defined as above with conditions:

3$. �q
i=1 ni=n&l, and the equality nj+1=1 holds for k j=k j+1 ;

4. |C( j)
q |=q+1+l, [b2mk

(j) , b2mk
(j)

+1]/C( j)
q , k=1, 2, ..., l; [m( j)

1 , ..., m ( j)
l ]

/[k1 , ..., kq].

It is easily to see that for given K and An there exists a finite number of
admissible collections.

Denote by E(Kq , C ( j)
q , Nq , A (i)

n ) a set �q
i=1 [b� 2i&1 , b� 2i] such that

b� i � C( j)
q are defined from the following relations (with q>1):

rank \ e ij

fkj

di

gk +
q, q&1, q&1

i=1, k=1, j=1

=q&1, (32)
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where

ei, j=|
b� 2i

b� 2i&1

xq& j&1

(&h� (x))1�2
dx, i=1, ..., q; j=1, ..., q&1; (33)

fk, j=|
b� 2k+1

b� 2k

xq& j&1

h� 1�2(x)
dx, k=1, ..., q&1; j=1, ..., q&1; (34)

di=ni ?(&1)q&i+1&*� i+}n |
b� 2i

b� 2i&1

xq&1

(&h� (x))1�2
dx

+ :
ln

j=1

mj, n aj, nh� 1�2(1�a j, n) |
b� 2i

b� 2i&1

_
dx

(1&aj, n x)(&h� (x))1�2
, i=1, ..., q; (35)

gk=}n |
b� 2k+1

b� 2k

xq&1

h� 1�2(x)
+ :

ln

j=1

m j, naj, nh� 1�2(1�a j, n)

_|
b� 2k+1

b� 2k

dx

(1&aj, n x) h� 1�2(x)
, k=1, ..., q&1; (36)

h� (x)= `
2q

j=1

(x&b� j); (37)

*� i= :
q

j=1

:
k: (1�ak, n) # (b� 2 j , b� 2 j+1)

mk, n , b� 2q+1=+�.

In denominators in (33)�(36) the square roots are positive and in (35), (37)
branch of square root

h� 1�2(1�a j, n)

is taken the same as in the equality

lim
z � �

h� 1�2(z)�zq=1.

It follows from Lemma 1 and the uniqueness of the best approximation
polynomial that for any admissible collection [Kq , C ( j)

q , Nq] and A ( j)
n

there exists at most one set E(Kq , C ( j)
q , Nq , A (i)

n ). Now we denote by
G� (K1 , ..., Kq&1)(Kq , C ( j)

q , Nq , A ( j)
n ) a unique domain of the kind from the

Introduction such that it is mapped conformally by the function x=,� (z)
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from Lemma 2 onto C"E(Kq , C ( j)
q , Nq , A ( j)

n ). Then by Lemma 3 it is
possible to construct the function

Rn*(x)=Rn*(x, Kq , C ( j)
q , Nq , A ( j)

n ),

which is the Chebyshev�Markov rational function for the set
E(Kq , C ( j)

q , Nq , A ( j)
n ). Denote by '1 , ..., 'n+q&1 deviation points for Rn*(x),

i.e. |Rn*('i)|=&Rn*&C(E(Kq , Cq
(j), Nq, An

(j))) , &1�'1< } } } <'n1+1=b� 2<'n1+2=
b� 3< } } } <'n+q&l=1.

Theorem 1. The solution of problem (1) has one of the following forms:

R� n(x)=Mn(x)

or

R� n(x)=Rn g \[z, !0]}n

[z; !� 0]}n
`
ln

i=1

[z, ! i]
mi, n

[z; !� i]
mi, n

exp {& :
q&1

i=1

ni+1 8i (z)=+
where g is the Joukowski map, [z; !i] and exp 8i (z) are the Schottky�
Burnside functions (4), (5) constructed from a unique group 1� (Kq ,
C( j)

q , Nq , A ( j)
n ), such that for any m, 1�m�q, the set �km

i=km&1
[b2i&1 , b2i]

contains all points 'i , i=n1+n2+ } } } +nm&1+m, ...n1+n2+ } } } +
nm+m, with possible exclusion of that point from b� 2l&1 ; b� 2l , which does not
belong to C( j)

q . The constant Rn is defined by the relation

lim
x � +�

R� n(x)(|n(x))
x}n

=1.

Proof. Let R� n(x) be the solution of Problem (1). In addition, suppose
that R� n(x) is non-degenerate. Then, by Proposition 1, there exist points
[x1< } } } <xn+1]/K such that

R� n(xi)=(&1)n&i+1+�j # J sj &R� n &C(K) .

In this case there exists exactly one zero zi of R� n(x) between any pair of
points xi and xi+1 , i=1, ..., n. There is a possibility of existence of devia-
tion points tj , j=1, ..., m (i.e. t j {xi , i=1, ..., n+1, and |R� n(ti)|=
&R� n&C(K)). Suppose that the interval [b2i&1 , b2i] contains the points
xji

, ..., x ji+1&1 . Then there are two cases:

1. the interval (b2i , b2i+1) does not contain points x with

|R� n(x)|>&R� n&C(K) ; (38)

2. there are points x # (b2i , b2i+1) where (38) holds.
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In the first case one can consider the interval [b2i&1 , b2i+2] instead of
the intervals [b2i&1 , b2i] and [b2i+1 , b2i+2] and defines the set K� corre-
spondingly. Here i # Kq , b2i � C (0)

q , b2i+1 � C (0)
q . Then the function R� *n(x)

will be the solution of Problem (1) for K� . In the second case there are two
variants:

(a) there are points x with property (38) between xji+1&1 and zji+1&1

as well as between zji+1&1 and xji+1
;

(b) only one from intervals (xki+1&1 , zki+1&1) and (zki+1&1 ; xki+1
)

contains points with (38).

In case (a) there are at least two points tli
# (xji+1&1 , z ji+1&1) and

tli+1 # (zji+1&1 , sji+1
), and K� =K _ [t li

, t li+1]. Here the relations xji+1&1=
b2i and xji+1

=b2i+1 hold and the corresponding elements from
(Kq , C0)

q , Nq) should be kl=k l+1=i, [b2i , b2i+1]/C (0)
q , nl=1, and

nl&1=ki+1&ki (for b2i&2 # C0
q).

In variant (b) one has to enlarge K in case of need by such a way that
for x # [b2i&1 , b� 2l] and for x # [b� 2l+1 , b2i+2] relation (38) should not hold,
and for x # (b� 2l , b� 2l+1) inequality (38) should be satisfied. Here at least one
from the equalities b� 2l=b2i or b� 2l+1=b2i+1 should be satisfied and either
b2i # C (0)

q or b2i+1 # C (0)
q . Moreover, k l&1<k l=i<kl+1 .

Finally we obtain a set K� consisting from q�2p&1 intervals and such
that K� =E(Kq , Cq , Nq , An), R� n(x)=R*n(x, Kq , C (0)

q , Nq , An), for some
admissible collection (Kq , C (0)

q , Nq), where [k j]q&1
j=1 are the numbers of

gaps from (b2 , b3), ..., (b2p&2 , b2p&1) containing gaps (b� 2 , b� 3), ..., (b� 2q&2 ,

b� 2q&1), nj is the number of zeros of the function R� n(x) on [b� 2 j&1 , b� 2 j],
j=1, ..., q, and C(0)

q contains those points from b1 , b2 , ..., b2p&1 which are
the ends of intervals forming K� (exactly one for each gap).

If R� n(x) is degenerate, then for some A ( j)
n the function R� n(x) will be non-

degenerate solution of problem (1) for n=n&l and

|( j)
n&l(x)=

|n(x)
> l

k=1 (1&a ( j)
ik, nx)

.

Indeed, if A ( j)
n is regular with respect to K, then the corresponding function

Rn*(x)=Rn*(x, Kq , C ( j)
q , Nq , A ( j)

n ), is the Chebyshev�Markov rational func-
tion up to constant factor for any A ( j&1)

n+1 =A ( j)
n _ [1�a] with 1�a #

[&1, 1]"K

\R� n(x)=
Rn*(x)(1&ax)

a(1&ax) + .

Here the points bi , bi+1 such that bi<1�a<bi+1 are not the alternation
points for the row A ( j)

n but they are for the row A ( j&1)
n+1 .

Hence the application of Lemmas 1�3 completes the proof.
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